Геонейтрино — это нейтрино и антинейтрино, которые рождаются в результате радиоактивного распада элементов в недрах нашей планеты. Большинство из них — это электронные антинейтрино, возникающие при распаде долгоживущих изотопов урана-238, тория-232 и калия-40.
Сами по себе нейтрино — это фундаментальные частицы, настоящие "призраки" Вселенной. Они не имеют электрического заряда, их масса почти нулевая, и они пронизывают все вокруг триллионами каждую секунду, ПРАКТИЧЕСКИ ни с чем не сталкиваясь.
Создаваемые по всему миру нейтринные детекторы позволяют "ловить" эти частицы. Поскольку геонейтрино беспрепятственно проходят через толщу Земли, они являются уникальным прямым источником информации о процессах, протекающих в ее глубинах, куда невозможно проникнуть физически. Их изучение помогает определить, какая доля внутреннего тепла Земли (а его выделяется около 47 Тераватт) генерируется радиоактивным распадом, а также оценить количество и распределение соответствующих элементов. Эти данные критически важны для понимания геодинамики и тепловой эволюции нашей планеты.
Эти "призрачные" частицы служат проводниками в недоступные иным способом места. Помимо геонейтрино, существуют, например, солнечные нейтрино, которые позволяют заглянуть прямо в ядро нашего Солнца и изучать протекающие там термоядерные реакции.
Его чувствительность настолько высока, что всего за 59 дней работы он провел измерения ключевых параметров нейтрино с точностью, на достижение которой в рамках предыдущих экспериментов потребовалось почти полвека!
Туманность NGC 6357 — одна из самых удивительных звездных фабрик нашей галактики, расположенная в созвездии Скорпиона, на расстоянии около 5 500 световых лет от Земли. Внутри нее формируются не отдельные звезды, а целые звездные скопления.
Недавние наблюдения с помощью космического телескопа NASA "Джеймс Уэбб" выявили, что в этой туманности рождаются преимущественно массивные звезды, в 10-20 раз тяжелее Солнца. Ученые предполагают, что за это ответственные уникальные турбулентные потоки газа, которые создают в NGC 6357 идеальные условия для формирования гигантов.
Особую научную ценность представляют недавние наблюдения звездообразования в NGC 6357 с помощью комплекса радиотелескопов ALMA. Ученым удалось зафиксировать несколько протозвездных дисков на разных стадиях формирования, что позволяет изучать эволюцию звездных систем в "реальном времени". Некоторые из этих систем, вероятно, сформируют двойные звезды, вращающиеся вокруг общего центра масс.
2 февраля 2005 года орбитальный аппарат Европейского космического агентства (ESA) "Марс-экспресс" передал на Землю потрясающий снимок: кратер Лаут, расположенный недалеко от северного полюса Красной планеты, предстал во всей красе. В центре оранжево-коричневого марсианского ландшафта — ослепительно белое пятно водяного льда.
Средний диаметр ударного образования составляет 39 километров, а его глубина достигает полутора километров. Часть дна кратера покрыта отложением водяного льда, который не тает круглый год.
Лед вне полюсов — редкость
Большинство людей уверены: весь лед на Марсе сосредоточен на полюсах. Это не совсем так.
Да, полярные шапки — самые крупные ледяные массивы планеты, которые с Земли можно наблюдать даже в небольшой телескоп. Но лед встречается и в других местах — правда, при определенных условиях. Главное из них — постоянная затененность.
Кратер Лаут — один из немногих примеров стабильного присутствия водяного льда за полярными регионами. Его расположение и глубина создают идеальные условия: солнечные лучи почти не достигают дна, так что температура там остается низкой на протяжении всего марсианского года.
Почему лед не исчезает?
На Марсе крайне низкое атмосферное давление — около 0,6% от земного. В таких условиях вода не может существовать в жидком виде на поверхности: она либо замерзает, либо сублимирует — превращается в пар, минуя жидкую фазу.
Поэтому для сохранения льда нужна постоянная низкая температура. Если дно кратера освещено Солнцем — лед быстро испарится. Но в глубоких тенистых ударных структурах, подобных Лауту, температура никогда не перешагивает через критическую отметку. Немаловажный вклад в обеспечение низкой температуры и сохранности ледяного покрова вносит близость к северному полюсу — здесь холоднее, чем в экваториальных широтах.
Бесценный ресурс для будущих миссий
Анализ данных, полученных с помощью "Марс-экспресс" и NASA MRO (еще один орбитальный аппарат), показал, что лед в кратере Лаут относительно чистый. Это важно. Марсианский грунт содержит перхлораты — агрессивные химические соединения, опасные для человека. Поэтому лед, смешанный с грунтом или добытый из-под поверхности, будет требовать сложной очистки. А вот чистый лед из кратеров — готовый ресурс.
Вода будет нужна марсианским колониям для всего: питье, гигиена, выращивание растений, производство кислорода и даже ракетного топлива. Метод электролиза позволяет расщепить воду на водород и кислород — оба компонента пригодны для двигателей.
Кратер Лаут и подобные ему природные образования, заполненные обильными запасами чистого водяного льда, могут стать стратегическими точками для возведения первых баз на Марсе.
Марс-экспресс продолжает работу
Космический аппарат "Марс-экспресс", запуск которого состоялся 2 июня 2003 года, продолжает работать. Его бортовые инструменты позволили создать детальные карты поверхности, изучить разреженную атмосферу и обнаружить следы древних водоемов.
Кратер Лаут — лишь одна из тысяч удивительных находок, которые помогают нам понять прошлое Марса и подготовиться к формированию его будущего.
Всего 20 лет назад идея, что где-то во Вселенной существуют алмазы диаметром в тысячи километров, воспринималась научным сообществом как фантастика. Но сегодня это доказанный факт: некоторые белые карлики действительно способны превращать свои "внутренности" в гигантские кристаллы углерода — самые большие "бриллианты" во Вселенной.
Белый карлик — это то, во что в конце жизненного цикла превращается звезда небольшой или средней массы, когда запасы ее "топлива" для продолжения термоядерных реакций заканчиваются. Светило сбрасывает оболочки, и на его месте остается сверхплотное ядро размером с Землю, но с массой до 1,44 солнечных.
Этот звездный "огарок" постепенно остывает, и через миллиарды лет начинается самое интересное.
Под чудовищным давлением в миллиарды атмосфер углерод в ядре начинает кристаллизоваться. Атомы выстраиваются в идеальную кубическую решетку, почти идентичную алмазной. В итоге внутри белого карлика вырастает единый кристалл колоссальной массы.
Первый объект такого рода был найден в 2004 году.
Белый карлик BPM 37093 в созвездии Центавра, удаленный примерно на 50 световых лет от Земли, получил неофициальное прозвище "Люси" — в честь песни The Beatles "Lucy in the Sky with Diamonds". С помощью астросейсмологии (анализ пульсаций звезд для изучения их внутренней структуры), команда ученых из Гарвард-Смитсоновского центра астрофизики выяснила, что около 90% массы Люси уже закристаллизовалось. Диаметр алмазного ядра — около 9 000 километров, а его масса — примерно 10³¹ кг (в 1,1 раза больше массы Солнца).
Примечательно, что в процессе перестройки углерода высвобождается скрытая теплота фазового перехода. Это отсрочивает охлаждение белого карлика на 2-4 миллиарда лет. Выходит, что кристаллизация — это еще и природный "обогреватель", который продлевает жизнь угасающей звезды.
С тех пор было обнаружено нескольких десятков кандидатов с кристаллизованными ядрами. Данные, полученные с помощью космического телескопа ESA Gaia и наземной обсерватории Gemini показывают, что примерно каждый десятый белый карлик в определенном диапазоне масс и возраста проходит стадию "алмазного сердца".
Прямо сейчас во Вселенной вращается бесчисленное множество гигантских "алмазов", которые будут сиять еще миллиарды лет после того, как погибнет Солнечная система.
10 марта 2023 года орбитальный аппарат "Аль-Амаль" (в переводе — "Надежда"), запущенный в 2021 году Космическим агентством Объединенных Арабских Эмиратов (UAESA) для изучения марсианской атмосферы, приблизился к Деймосу на рекордные 104 километра.
Это было максимальное сближение с естественным спутником за всю историю исследования системы Красной планеты. Результат: самые детализированные снимки и данные, которые меняют наше понимание его происхождения.
Что мы знаем о Деймосе?
Деймос — меньший и наиболее удаленный из двух спутников Марса (второй — Фобос). Его средний диаметр составляет всего 12,4 километра, а орбита проходит на высоте около 23 500 километров от поверхности планеты. Этот каменистый спутник неправильной формы был открыт в 1877 году и назван в честь древнегреческого бога ужаса.
Первые снимки Деймоса были получены автоматической межпланетной станцией NASA "Маринер-9" в 1971 году. С тех пор спутник попадал в кадр многих миссий, но всегда издалека.
Зонд "Надежда" изменил это, сделав детальный снимок обратной стороны спутника и получив подробную информацию о его составе и структуре.
Революционное открытие
Продолжительное время господствовала гипотеза, что Деймос и Фобос — астероиды, попавшие в гравитационную ловушку Марса. Аргументация этой концепции была просто абсурдна: спутники слишком маленькие, кривые и непохожи на "нормальные" луны.
Инфракрасный спектрометр "Надежды" показал, что состав Деймоса ближе к марсианскому базальту, чем к астероидам класса D (темным объектам с красноватым спектром, которые очень плохо отражают свет).
Это весомое доказательство в пользу гипотезы, предложенной в 2018 году планетологом (планетологиней?) Робин Кануп, которая гласит, что спутники Марса являются фрагментами самой планеты, выброшенными в космос в результате древнего столкновения с массивным объектом. Моделирование показывает, что диаметр ударного тела мог достигать 1 000 километров. Для сравнения: средний диаметр Марса составляет 6 792 километра.
Примечательно, что эта гипотеза не только объясняет происхождение спутников Марса, но и дает подсказки касательно катастрофических климатических изменений, превративших Марс в промерзлую пустыню.
Этот снимок, сделанный ровером NASA Curiosity, может показаться ничем не примечательным: там-сям лежат камни, кое-где видно песок... Но это изображение — одно из самых убедительных доказательств того, что миллиарды лет назад на Марсе текли реки.
Целенаправленным поиском следов водного прошлого Красной планеты занимался еще марсоход NASA Opportunity, последней целью которого была древняя Долина Настойчивости, прорезающая склон 22-километрового кратера Индевор. Глобальная пылевая буря, изолировавшая планету от Солнца и выведшая Opportunity из строя, передала эстафету Curiosity.
Еще до обнаружения каких-либо весомых доказательств, ученые рассматривали два возможных варианта:
Если на Марсе царили лишь бурные, кратковременные потоки — результат катастрофических наводнений или таяния ледников — камни будут крупными, угловатыми и хаотично разбросанными.
Если же мы найдем пересохшие русла некогда стабильных рек — постоянный поток воды на протяжении тысяч или миллионов лет — то на их месте будет отполированная галька, слоистые отложения и следы осадочных пород.
Curiosity вне всяких сомнений нашел второе.
Что видим на снимке?
Камни с гладкими краями. Мелкий песок между ними. Слоистые структуры на поверхности более крупной горной породы.
Округлые камни на снимке — классическая речная галька, точно такая же, как на берегах земных рек. Сглаживание граней обеспечивается длительным воздействием текущей воды: камни перекатываются по дну реки, трутся друг о друга, постепенно теряя острые углы. Процесс занимает десятки тысяч лет.
Сегодня у Марса нет плотной атмосферы, которая могла бы обеспечить существование жидкой воды на поверхности. Но в очень далеком прошлом газовая оболочка планеты была намного толще, температура выше. По поверхности текли реки. Вода активно формировала ландшафт.
Исходя из земного опыта, мы знаем, что вода — основа жизни. И, кажется, когда-то Марс располагал условиями для ее зарождения. Может быть, микробной, примитивной — но жизни. На поверхности мы ее не видим, так как катастрофические изменения могли вынудить ее уйти в глубины грунта, где сегодня более комфортно и безопасно... а для проверки этой гипотезы нужны специализированные аппараты следующего поколения. Но однажды они будут созданы и доставлены на Марс, чтобы бурить, собирать образцы и анализировать их в поисках ответов.
Эта фотография — послание из очень далекого прошлого. Марс когда-то был похож на Землю, но что-то "сломало" его, превратив в промерзлую пустыню.
В Антарктиде, на территории безжизненных и бесснежных Сухих долин Мак-Мердо, находится одно из самых удивительных природных образований на Земле — озеро Дон-Жуан.
Его площадь — всего 0,3 км², а средняя глубина — 10 сантиметров. Но главная особенность озера не в скромных размерах, а в солености (содержании солей), которая достигает 44%. Это делает Дон-Жуан одним из самых соленых водоемов на планете.
Для сравнения: соленость Мирового океана — 3,47% (почти в 13 раз меньше!), а Мертвого моря — 35%.
Несмотря на то, что температура в регионе может опускаться до -50 градусов Цельсия, озеро никогда не замерзает. Связано это с чрезвычайно высокой концентрацией хлорида кальция (CaCl2), который снижает точку замерзания до -51°C.
Долгое время считалось, что жизнь в этом водоеме невозможна. Но в 2013 году ученые обнаружили микроорганизмы — археи и бактерии — живущие в микроскопических пленках между кристаллами соли. Жизнь, как всегда, нашла путь.
Озеро Дон-Жуан — это не просто чудо природы, а естественная лаборатория для понимания Марса. Концентрация и состав солей, найденных роверами NASA, очень напоминают аналогичные параметры Дон-Жуана. Если подтвердится существование подледных соленых озер на Красной планете, то они, определенно, будут рассматриваться как главные кандидаты на роль пристанища для внеземной жизни.
Вероятно, когда-то жизнь процветала на поверхности Марса, но катастрофические климатические изменения, растянувшиеся на миллионы лет, могли вынудить наиболее живучих ее представителей неторопливо мигрировать под поверхность с параллельной адаптацией.
В состоянии бодрствования наш мозг работает как очень мощный компьютер с подключенными датчиками и сенсорами, которые позволяют осуществлять постоянную сверку внутренней модели мироустройства с потоком внешних сигналов.
Все, что мы видим, слышим и ощущаем, проходит перекрестную проверку на согласованность. И благодаря этой непрерывной сверке данных формируется стабильная и логичная картина реальности.
Но во время сна все меняется. Инструменты для сверки практически полностью отключаются, и мозг, освобожденный от необходимости сопоставлять знания об устройстве реальности с поступающей извне информацией, запускает режим "свободной сборки".
Он начинает генерировать образы, сюжеты и эмоции, комбинируя обрывки воспоминаний, страхов и желаний. Во время фазы быстрого сна (REM), когда мы видим наиболее яркие и запоминающиеся сновидения, активность префронтальной коры мозга, отвечающей за критическое мышление, резко снижается. Именно поэтому во сне мы не удивляемся возможности летать, ездить верхом на розовом пони и разговаривать с людьми, давно покинувшими мир живых.
Момент пробуждения — первый шаг очередной верификации. Мозг проводит быстрый аудит, сравнивая воспоминания о сне с новой порцией данных от органов чувств. Яркий солнечный свет, звук будильника, ощущение теплой постели — все это моментально обличает несостоятельность ночных галлюцинаций (а сны — это именно галлюцинации).
Так и происходит разграничение: то, что подтверждается органами чувств, — реальность; то, что остается лишь отрывочным воспоминанием, рассыпающимся, как песочный замок, через несколько часов после пробуждения, — сон.
Интересно, что эта система порой дает сбой. Во время резкого пробуждения или в состоянии сонного паралича мозгу не всегда удается оперативно сверить внутреннюю модель мироустройства с потоком внешних сигналов. Это ненадолго создает иллюзию отсутствия границы между вымыслом и явью. Поэтому визуальные, слуховые и тактильные галлюцинации, вызываемые сонным параличом, могут быть крайне пугающими и едва ли отличимыми от реальности.
Аппарат, срок активного существования которого был рассчитан всего на 90 солов (92,5 суток), проработал более 14 лет (с 25 января 2004 года по 12 июня 2018 года).
Вероятно, Opportunity работал бы по сей день, если бы не глобальная пылевая буря, которая изолировала планету от Солнца.
Ровер, оставшись без источника энергии, экстренно перешел в спящий режим, в котором провел несколько недель. "Проснуться" аппарат так и не смог. 13 февраля 2019 года NASA официально объявило о его утрате и завершении миссии.
За время работы Opportunity:
Преодолел 45,16 километра;
Передал на Землю свыше 217 000 снимков;
Обнаружил первые доказательства того, что на Красной планете когда-то были соленые моря.
"Молчание Opportunity — это конец целой эпохи в исследовании Марса", — прокомментировали завершение миссии в NASA.
Наследие Opportunity оказывает влияние на действующие миссии NASA Curiosity и Perseverance и, непременно, станет фундаментом будущих миссий по исследованию загадочной планеты, которая когда-то была очень похожа на Землю.
Ныне неподвижный Opportunity — памятник человеческому упорству, установленный на миллионы лет на поверхности четвертой от Солнца планеты.
Представьте мир, где нет ни восходов, ни закатов. Мир, у которого нет своей звезды, и поэтому он вынужден одиноко дрейфовать в ледяной межзвездной пустоте.
Именно таким миром является экзопланета PSO J318.5-22 — космический изгнанник, мчащийся сквозь Млечный Путь. Его открытие состоялось в 2013 году.
Планета без дома
PSO J318.5-22 находится на расстоянии около 80 световых лет от Земли — по космическим меркам это почти по соседству. Масса экзопланеты превосходит массу Юпитера в 8,3 ± 0,5 раза, а ее диаметр в 1,46 раза больше аналогичного параметра крупнейшей планеты Солнечной системы.
Когда-то этот объект был частью обычной планетной системы, но гравитационные возмущения, связанные с более массивной планетой или звездой-компаньоном, вышвырнули ее в межзвездное пространство. Теперь юная PSO J318.5-22, возраст которой составляет "всего" 23 миллиона лет (из которых 12 миллионов лет она провела в изгнании), мчится сквозь Галактику со скоростью 25 километров в секунду, не имея шансов вернуться домой.
Горячая планета в холодной пустоте
Несмотря на то, что PSO J318.5-22 лишена тепла родительской звезды, ее поверхность раскалена до 830 градусов Цельсия — температуры, достаточной, чтобы расплавить алюминий. Откуда же берется это тепло?
Источников тепла у этого мира два. Первый — остаточная энергия гравитационного сжатия, доставшаяся в наследство от процесса формирования. Второй — непрерывный распад радиоактивных элементов в недрах. PSO J318.5-22 — словно тлеющий уголек в ледяной пустоте космоса, который медленно, но неотвратимо остывает.
Обнаружить планету без звезды — крайне сложная задача. Астрономы засекли PSO J318.5-22 благодаря ее инфракрасному свечению: она буквально светится от внутреннего тепла, излучая в диапазоне, невидимом для человеческих глаз.
Современные наблюдения дают понять, что планеты-изгои — весьма распространенные объекты во Вселенной. То есть их существование — не исключение из правил, а обычное явление, связанное с динамикой планетных систем. Моделирование показывает, что только в Млечном Пути могут быть миллиарды подобных бродяг — гигантская скрытая популяция миров, изгнанных из родных систем и обреченных на вечное одиночество в межзвездной пустоте.
На расстоянии около 300 миллионов световых лет от Земли находится объект Arp 273 — система взаимодействующих галактик, которые сформировали структуру, напоминающую космическую розу с причудливыми лепестками из звезд.
Все изображения, представленные в статье, были получены 17 декабря 2010 года с помощью космического телескопа NASA/ESA "Хаббл".
Arp 273 состоит из двух галактик, получивших обозначения UGC 1810 (верхняя, более крупная) и UGC 1813 (нижняя, меньшего размера). Галактики не просто соседствуют в пространстве — они активно взаимодействуют друг с другом на протяжении миллионов лет, приближаясь к неминуемому слиянию под влиянием гравитации.
Верхняя галактика UGC 1810 уже приобрела необычную асимметричную форму. Ее спиральные рукава искажены и вытянуты, что делает их похожими на лепестки розы.
Это результат гравитационного воздействия меньшей галактики-компаньона UGC 1813, которая миллионы лет назад совершила близкий пролет около UGC 1810.
Нижняя галактика UGC 1813 тоже не осталась неизменной. Гравитационное притяжение соседки вытянуло ее, сформировав длинный приливной хвост — поток звезд, газа и пыли, устремленный в космическое пространство.
Столкновение галактик — это катализатор, стимулирующий зарождение новых звезд во взаимодействующих системах. Когда галактики сближаются, то их газовые облака сталкиваются и сжимаются, что создает идеальные условия для стремительного звездообразования.
Области наиболее активного рождения новых светил выглядят как бело-голубые пятна — там формируются очень горячие и массивные звезды, которые проживут недолгую жизнь (по астрономическим меркам), а после вспыхнут сверхновыми и станут строительным материалом для звезд и планет следующего поколения.
В ходе этого процесса, который растянется на сотни миллионов лет, спиральные структуры будут разрушены окончательно, звезды перемешаются, а центральные сверхмассивные черные дыры столкнутся, породив еще более массивную черную дыру.
Подобные слияния — обычное явление во Вселенной. Наше мироздание продолжает меняться, переорганизовываться, чтобы... что? Для чего? Очень многие вопросы остаются без ответов.
В последние годы тема неопознанных аномальных явлений (UAP), или, как их чаще называют, НЛО, вышла далеко за пределы теорий заговора и попала в поле зрения серьезных государственных структур некоторых стран.
Пентагон рассекретил несколько видеозаписей военных пилотов с объектами, "демонстрирующими необъяснимые характеристики полета", а конгресс США провел ряд пафосных слушаний по этой теме. Позже выяснилось, что подобными исследованиями занимается и Китай.
Все это наталкивает на вопрос: могут ли правительства скрывать доказательства контакта с внеземными цивилизациями или хотя бы факт их существования? Давайте разберем этот вопрос с научной точки зрения без каких-либо спекуляций.
Аргументы в пользу возможности сокрытия
У того или иного государства, получившего неопровержимые доказательства существования внеземного разума или даже вступившего с ним в контакт, есть как минимум две причины скрывать информацию такого рода:
Предотвращение социальной паники
Факт существования высокоразвитой внеземной цивилизации способен вызвать масштабный кризис, который может нанести серьезный — или даже непоправимый — урон нашему виду. Религиозные институты, экономические системы, социальный порядок — все это может оказаться под угрозой при столкновении с реальностью, что человечество не уникально и, возможно, не является доминирующей силой даже в пределах собственной планеты (это если предположить, что прогрессивные инопланетяне всегда были рядом, скрываясь где-нибудь на дне океана или глубоко под землей).
Налаживание контакта с внеземной цивилизацией в перспективе может дать доступ к высоким технологиям, что, естественно, обеспечит колоссальное военное и экономическое преимущество. Засекречивание такой информации станет вопросом национальной безопасности.
В 1950 году физик-теоретик и лауреат Нобелевской премии по физике Энрико Ферми отметил таинственное отсутствие видимых следов деятельности прогрессивных инопланетных цивилизаций, которые должны были бы появиться и расселиться по всей Вселенной за миллиарды лет ее существования. И одно из возможных объяснений этого "парадокса Ферми" заключается в том, что контакт уже состоялся, однако информация об этом засекречена и доступна лишь узкому кругу лиц.
Аргументы против сокрытия
Несмотря на логичность приведенных выше доводов, наука указывает на серьезные препятствия для существования "заговора молчания" такого уровня:
Невозможность хранить секрет такого масштаба
В 2016 году математик Дэвид Граймс вывел формулу, которая показывает, что чем больше людей знают секрет, тем быстрее он раскроется. Для того, что правительство могло скрывать факт контакта с инопланетянами, это контакт должен состояться. А это невозможно без участия тысяч ученых, инженеров и военных. Вероятность утечки была бы просто огромной. Например, Манхэттенский проект — один из самых засекреченных в истории (примерно 99% из 130 000 участников не знали о конечной цели) — начали обсуждать в прессе до первого испытания атомной бомбы.
Астрономы, астрофизики и астробиологи по всему миру работают независимо друг от друга. Тысячи телескопов, как государственных, так и частных, непрерывно сканируют небо. Если бы у кого-то появились доказательства, или хоть сколько-нибудь значимые аргументы в пользу существования внеземного разума, то их невозможно было бы скрыть от всего научного сообщества планеты.
Посудите сами: стоило группе ученых сказать, что межзвездная комета 3I/ATLAS может быть инопланетным зондом и это тут же стало предметом широких публичных дискуссий.
Отсутствие физических доказательств
За десятки лет исследований НЛО никто так и не предоставил ничего, что однозначно бы указывало на то, что Землю когда-либо посещали инопланетяне. Размытые видео, фотографии низкого качества и свидетельства очевидцев — недостаточная база для столь экстраординарных заявлений.
Это примерно как утверждать об изобретении вечного двигателя, предъявляя в качестве доказательства лишь видео с загорающейся лампочкой
Открытость программ поиска
Институты вроде SETI (поиск внеземного разума) работают открыто и публикуют все свои данные, к анализу которых подключают всех желающих. Если бы сигнал от внеземной цивилизации был зафиксирован, об этом узнал бы весь мир практически мгновенно. Кроме того, если бы SETI предоставил доказательства такого рода, то его бы просто завалили деньгами.
Что говорит наука?
Научное сообщество придерживается принципа: экстраординарные заявления требуют экстраординарных доказательств. И на сегодняшний день таких доказательств нет. Обнародованные материалы Пентагона о неопознанных явлениях действительно демонстрируют нечто, не имеющее однозначного объяснения, но это вовсе не означает автоматически, что перед нами инопланетные технологии. Большинство подобных случаев можно объяснить ошибками приборов, оптическими иллюзиями или секретными военными испытаниями.
Исследования показывают, что только в Млечном Пути около 10 миллиардов землеподобных планет. И этот факт повышает вероятность того, что где-то там однажды зародилась разумная жизнь, задающая вопросы о своем происхождении и месте во Вселенной. Но расстояния между звездами настолько огромны, что контакт с другими цивилизациями может оказаться банально невозможным в силу физических ограничений скорости света.
Вывод
Итак, могут ли правительства скрывать контакт с "братьями по разуму"? Гипотетически — да. Практически — крайне маловероятно. Глобализация, открытость научного сообщества и сложность сохранения такой информации в секрете делают любые конспирологические заявления о "заговоре молчания" несостоятельными.
Важное напоминание: чтобы оставаться в здравом уме и не скатиться в пучину безумия, важно сохранять научный скептицизм и не поддаваться соблазну простых конспирологических объяснений.
Кадр, представленный ниже, был получен космическим аппаратом NASA "Кассини" 12 марта 2012 года. И это не просто очередная красивая космическая фотография, а карта будущего — направление, по которому человечество пойдет в поисках жизни за пределами Земли.
На переднем плане — ледяной 504-километровый спутник Сатурна Энцелад. Его поверхность покрыта толстой коркой льда, средняя толщина которой составляет внушительные 20 километров. Но под ней скрывается глобальный подповерхностный океан. Из глубоких разломов на южном полюсе, носящих поэтическое название "тигровые полосы", регулярно вырываются струи водяного пара и ледяных частиц — гейзерная активность, выбрасывающая в открытый космос материал, который берется непосредственно из океана.
"Кассини" несколько раз пролетал сквозь гейзеры Энцелада, осуществляя анализ образцов прямо налету. В ходе этих операций аппарат обнаружил сложные органические молекулы, аммиак, метан, соли и фосфаты. Кроме того, недавний повторный анализ данных показал, что океан Энцелада существенно теплее, чем предсказывали модели, а еще он очень стабильный и, определенно, существует очень давно. Все это является косвенным доказательством того, что перед нами очень перспективное место для зарождения и поддержания жизни, какой мы ее знаем по земному опыту. Вероятно, Энцелад уже является обитаемым миром.
На заднем плане изображения — Титан, гигантский спутник со средним диаметром 5 152 километров. Этот мир крупнее Меркурия (средний диаметр 4 879 километров) и почти в 1,5 раза больше Луны. Титан — единственный спутник в Солнечной системе, наделенный атмосферой (она даже на 50% плотнее земной), и на поверхности которого есть устойчивые "водоемы", представляющие собой углеводородные "коктейли": реки, озера и моря из жидких метана и этана. В этих "водоемах", при температуре ниже -180 градусов Цельсия, могут протекать химические процессы, совершенно чуждые земной биохимии — но, возможно, не менее сложные.
Энцелад предлагает нам жидкую воду и органику — основу земной жизни. Титан — жидкость, но другую, и атмосферу, способную поддерживать необычные формы химической эволюции.
Оба мира — не просто интересные объекты. Они — две природные лаборатории для проверки независимых гипотез о том, как может возникнуть жизнь в космосе. И на этом снимке два таких разных небесных тела, представляющих колоссальный научный интерес, символически разделены кольцами Сатурна.
Это существо выглядит как порождение самых мрачных ночных кошмаров, вынуждающих просыпаться в холодном поту. Огромные глаза-трубки, светящиеся в темноте. Пасть, усеянная зубами-иглами. Способность заглатывать жертв крупнее себя. Нет, это не инопланетный монстр, а земная глубоководная рыба-телескоп (род гигантуры), один из самых жутких хищников океанских глубин.
У рыбы-телескопа длинное стройное тело с массивной головой и заостренным рылом. При общей длине 15-20 сантиметров на хвостовую часть может приходиться до половины тела, что придает обладателю еще более зловещий вид.
Массивная пасть, усеянная тонкими острыми зубами для захвата добычи, занимает большую часть головы. Тело покрыто гуанином вместо чешуи, что придает ему специфический серебристый блеск.
Пожалуй, самая поразительная особенность рыбы-телескопа — цилиндрические трубчатые глаза. Эти органы зрения настолько увеличивают светопропускание, что позволяют видеть биолюминесцентную добычу с большого расстояния на глубинах 500-3000 метров. Кроме того, этот хищник может обнаруживать добычу сверху на фоне крайне слабого света, который едва проникает в морские глубины.
Во тьме океана рыба-телескоп передвигается вертикально головой вверх, высматривая добычу, которая излучает свет. Благодаря эластичным челюстям этот монстр, догнав жертву, заглатывает ее целиком. Часто жертвами становятся хаулиоды, гоностомовые рыбы и другие глубоководные виды, некоторые из которых превышают его по размеру (обычное дело для глубоководных хищников).
Где обитает морской ужас?
Рыба-телескоп встречается в водах тропических и субтропических зон всех океанов. Эти существа предпочитают обитать на экстремальных глубинах, поэтому наблюдать их в естественной среде весьма проблематично.
К счастью, рыба-телескоп не находится под угрозой исчезновения, так что глубоководные исследовательские аппараты будущего позволят нам познакомиться поближе с этим жутким хищником, наводящим ужас в океанских глубинах вдали от человеческих глаз.
14 июля 2015 года космический аппарат NASA "Новые горизонты" совершил исторический пролет мимо системы Плутона, передав на Землю детальные изображения карликовой планеты и ее крупнейшего спутника Харона.
Далекий и холодный Харон, названный в честь мифического перевозчика душ умерших через реку Стикс, оказался не менее интересным объектом, чем сам Плутон.
Красное пятно Мордор
Первое, что бросается в глаза при изучении снимков Харона — огромное красно-коричневое пятно, покрывающее львиную долю северной полярной области. Эта особенность, получившая название "Пятно Мордор" (лат. Mordor Macula), отсылает нас к мрачным землям из эпического романа Дж. Р. Р. Толкина "Властелин колец".
Когда на северном полюсе Харона наступает зима (которая длится более 100 лет), температура поверхности падает до -258°C. В таких условиях молекулы метана и азота, захваченные Хароном из разреженной атмосферы Плутона, замерзают и оседают на поверхности спутника. С приходом лета температура повышается до -213°C, летучие газы испаряются, но под ними остается слой тяжелых органических соединений - толинов. Под воздействием ультрафиолетового излучения со стороны Солнца эти вещества приобретают характерный красновато-коричневый оттенок.
Каньоны глубже земных
Поверхность Харона испещрена системой гигантских каньонов и разломов, протянувшихся на сотни километров.
Некоторые из них достигают глубины 7-9 километров, что существенно глубже знаменитого Большого каньона (Гранд-Каньона) на Земле, максимальная глубина которого "всего" 1,8 километра.
Эти структуры появились в результате естественного растрескивания ледяной коры, связанного с остыванием небесного тела, начавшегося миллиарды лет назад.
Кратеры из страны Оз
Зонд "Новые горизонты" позволил идентифицировать на поверхности Харона множество ударных кратеров разного возраста и размера. Все они были названы в честь персонажей и мест из произведений о вымышленных мирах.
Самый крупный — кратер Дороти диаметром около 100 километров, названный в честь главной героини "Волшебника страны Оз".
Рядом расположены кратеры поменьше: Пиркс (в честь капитана Пиркса из цикла рассказов Станислава Лема), Насреддин (фольклорный персонаж мусульманского Востока и некоторых народов Средиземноморья и Балкан), Немо (в честь капитана Немо из произведений Жюля Верна) и другие.
Двойная планета
Средний диаметр Харона составляет 1 214 километров — это почти половина диаметра самого Плутона (2 377 километров). Из-за столь необычного соотношения размеров систему Плутон-Харон иногда называют двойной карликовой планетой. Оба тела находятся в приливном захвате и всегда повернуты друг к другу одной стороной, вращаясь вокруг общего центра масс, который находится вне Плутона.
Поверхность Харона состоит преимущественно из водяного льда, что делает его заметно светлее Плутона. Именно контраст между серо-белой ледяной поверхностью и красно-коричневым полярным регионом обеспечивает столь необычный облик спутника на цветных изображениях.
Снимки, переданные "Новыми горизонтами" более 10 лет назад, остаются единственными детальными изображениями Харона (да и системы Плутона в целом). Космический аппарат остается действующим, продолжая свое путешествие в "глубины" пояса Койпера.
Но тут есть загвоздка: это абсолютная ложь. Эйнштейн не был двоечником. Напротив, он был одним из самых усидчивых, внимательных и умных детей во всей школе.
Откуда же взялся этот устойчивый миф, в который по сей день верят миллионы людей?
Четыре факта, исказивших историю
Молчаливый гений
Маленький Альберт поздно заговорил — до трех лет он молчал, предпочитая наблюдать за миром. Родители Герман и Паулина даже подозревали, что у них растет умственно отсталый наследник.
Но когда мальчик наконец открыл рот, то он сразу стал формулировать целые предложения. Просто до этого его мозг был занят более важными вещами, чем генерация детского лепета.
Путаница с оценками
В швейцарской школе Арау, где учился Эйнштейн, в то время действовала оценочная система, в корне отличавшаяся от той, к которой привыкли мы с вами. Там высшим баллом была единица, а не пятерка.
Поэтому, когда люди слышали, что у Эйнштейна были сплошные "единицы" по математике и физике, они воспринимали его как ни на что неспособного неуча. По факту же это были замечательные оценки — максимально возможные в той системе.
Конфликт с посредственностью
У Эйнштейна были сложные отношения с некоторыми преподавателями, и дело было не в его неуспеваемости. Наоборот — он все схватывал на лету и быстро разбирался в любой теме, но презрительно относился к педагогам, которые допускали ошибки или говорили глупости.
В порыве гнева один из учителей даже сказал, что Альберт "никогда ничего не достигнет". Ирония судьбы в том, что едва ли кто-нибудь вспомнит имя этого преподавателя, а вот Эйнштейн стал символом человеческой гениальности.
Провал... по французскому
Эйнштейн не смог поступить в Федеральную политехническую школу Цюриха с первого раза. Но завалил он не физику или математику — по этим предметам у него были как всегда блестящие результаты.
Проблемы возникли с гуманитарными дисциплинами, особенно с французским языком, который не был для него родным. Будущий ученый просто не желал тратить время на изучение того, что его не увлекало, предпочитая заниматься физикой, с которой уже тогда планировал связать свою жизнь.
Реальный Эйнштейн: гений, а не отстающий
В 12 лет Альберт самостоятельно изучил Евклидову геометрию, которую обычно проходят в старших классах.
В 15 лет будущий лауреат Нобелевской премии уже свободно владел дифференциальным и интегральным исчислением.
"Я никогда не делал ошибок в математике, а дифференциальное и интегральное исчисление освоил к 15 годам", — писал ученый в своем дневнике.
В подростковом возрасте он увлекся философией Канта — произведения, над которыми ломают голову студенты университетов и их седовласые наставники.
Разве это портрет двоечника? Скорее гения, который с детства интеллектуально опережал сверстников на годы (или десятилетия).
Стоит отдать дань уважения студенту медицинского вуза Максу Талмуду, который был наставником юного Эйнштейна, познакомившим его с чудесами науки, не связанными с сухой и скучной зубрежкой, принятой в школе.
Почему миф так живуч?
Люди обожают истории из серии "из грязи да в князи". Многим хочется верить, что великие достижения доступным каждому, даже двоечнику. Легенда про "неудачника Эйнштейна" дает надежду родителям плохо успевающих детей и оправдание тем, кто не желает учиться.
Но не стоит кормить двоечником мифами! Будущее поколение нужно учить тому, что успех требует адского труда и нечеловеческого упорства.
Альберт Эйнштейн — идеальный пример того, как выдающиеся способности, помноженные на страсть к познанию и трудолюбие, привели к революционным открытиям, перевернувшим наши представления об устройстве Вселенной.
В 2009 году космический телескоп NASA "Чандра" запечатлел одно из самых завораживающих зрелищ в космосе — туманность, поразительно похожую на гигантскую светящуюся руку, тянущуюся к красно-оранжевому облаку.
Объект, получивший неофициальное название "Рука Бога" (официально — PSR B1509-58), находится на расстоянии около 17 000 световых лет от Земли в направлении созвездия Циркуля.
Что породило космическую руку?
Примерно 1 700 лет назад в этой области космоса произошла катастрофа — массивная звезда, достигнув конца эволюционного пути, вспыхнула сверхновой (взорвалась). Материал, разогретый до колоссальных температур, разлетелся в разные стороны, а от светила осталось лишь сверхплотное остывающее ядро — пульсар, особый тип нейтронной звезды диаметром всего около 20 километров, но с массой примерно в полтора раза превышающей массу нашего Солнца.
Этот космический маяк совершает семь оборотов в секунду, что становится причиной генерации чудовищно мощного магнитного поля на его полюсах, которое в триллион раз сильнее земного. Именно оно ответственно за создание "руки".
Механизм формирования структуры
Мощное магнитное поле пульсара работает как гигантский ускоритель частиц. Заряженные частицы, оказываясь под его властью, разгоняются до скоростей, близких к скорости света, и выбрасываются в окружающее пространство вдоль силовых линий. Эти потоки высокоэнергетических частиц взаимодействуют с остатками взорвавшейся звезды, заставляя газ светиться в рентгеновском диапазоне.
Форма "пальцев" возникает из-за неравномерного распределения вещества и особенностей магнитного поля. Синие и фиолетовые оттенки на снимке "Чандры" соответствуют рентгеновскому излучению высокой энергии, создавая иллюзию светящейся руки, простирающейся почти на 150 световых лет — это расстояние от Земли до Проксимы Центавра (ближайшая к Солнечной системе звезда), умноженное на 35,3.
PSR B1509-58 — один из самых молодых известных пульсаров. Наблюдая за ним с помощью различных инструментов, ученые получают редчайшую возможность изучать процессы, протекающие на ранних стадиях жизни нейтронных звезд.
Красное облако — сосед под влиянием
Объект, к которому тянется "рука" — это туманность RCW 89, расположенная по соседству.
На 504-километровом спутнике Сатурна Энцеладе бьют гейзеры — но не из горячей воды, а из ледяной. Струи взмывают на сотни километров в космос, формируя E-кольцо планеты-гиганта.
Эта активность связана с тем, что под 20-километровой ледяной корой скрывается глобальный океан. Зонд NASA «Кассини», изучавший систему окольцованного гиганта с 1 июля 2004 года до 15 сентября 2017 года, обнаружил в выбросах сложные органические молекулы, водород, соли — все, что нужно для зарождения и поддержания жизни.
Почему обнаружение водорода, самого распространенного элемента во Вселенной, так интригует? Дело в том, что его присутствие указывает на гидротермальные процессы на дне океана — там, где горячая вода взаимодействует с породами. Аналогичное есть и на дне земных океанов — гидротермальные источники "черные курильщики", которые являются "оазисами жизни", процветающей на морской глубине без доступа к солнечному свету.
Откуда энергия?
Откуда столь крошечный мир берет энергию для извержений? Приливные силы Сатурна разогревают недра спутника изнутри. Орбита Энцелада слегка вытянута, и гравитация гиганта то сжимает, то растягивает его. Эти непрерывные процессы генерируют тепло. Трение превращает лед в воду, давление — в гейзеры.
Примечательно, что гейзерная активность сконцентрирована на южном полюсе спутника, что можно объяснить более тонкой ледяной корой. Там проходят четыре гигантских разлома — "тигровые полосы". Именно из них вырываются ледяные фонтаны, питающие кольцо Сатурна и обновляющие и без того белоснежную поверхность Энцелада.
Миссия будущего
Вне всяких сомнений Энцелад — один из главных кандидатов на роль дома для внеземной жизни. И для проверки этого нам даже не нужно бурить — океан сам великодушно выплескивается в космос.
Европейское космическое агентство (ESA) планирует организацию масштабной миссии к Энцеладу, подразумевающей не только отправку орбитального аппарата, но и спускаемого модуля, который совершит посадку на южный полюс для сбора образцов выбросов непосредственно у источника.
Если под льдами Энцелада действительно существует жизнь, мы можем найти ее доказательства уже в ближайшие десятилетия. А если мы не найдем там жизнь? Тогда мы будем искать ответ на вопрос, почему в идеальных условиях она не появилась.
За красивым названием "Восточная изумрудная элизия" (лат. Elysia chlorotica) скрывается морской слизень, обитающий у восточного побережья Северной Америки. Это создание выглядит скорее как плоский лист, чем как моллюск. А его необычный цвет является результатом одного из самых удивительных биологических "ограблений" в природе.
Elysia chlorotica питается нитчатыми желто-зелеными водорослями Vaucheria litorea. Но в отличие от обычных травоядных, слизень не просто переваривает пищу — он "ворует" у нее органеллы, отвечающие за фотосинтез. Хлоропласты из клеток водоросли встраиваются в клетки пищеварительной системы слизня и продолжают полноценно работать там месяцами.
Как работает биологическая кража
Хлоропласты не могут функционировать самостоятельно — им нужны сигналы от ядра клетки растения, которое содержит критически важные гены. Но эволюция вручила слизню решение этой проблемы: моллюск ворует не только хлоропласты, но и часть генетического кода водоросли.
Для успешного встраивания генов водоросли в геном Elysia chlorotica используется горизонтальный перенос генов. Это явление, когда генетический материал передается между организмами не через размножение, а напрямую — редкость для многоклеточных животных, но обычное дело для бактерий.
Благодаря этим украденным генам слизень начинает производить белки, необходимые для обеспечения работы хлоропластов. То есть животное научилось управлять растительной органеллой столь же качественно, как родительское растение.
Когда молодой слизень впервые съедает водоросль и "заражается" хлоропластами, он может обходиться без пищи до 10 месяцев — при условии доступа к солнечному свету. Хлоропласты используют энергию света для преобразования углекислого газа и воды в органические вещества, которые и идут на корм слизню.
Важно понимать, что это не симбиоз, когда два организма мирно сосуществуют на взаимовыгодных условиях. Это клептопластия — буквально "кража пластов" (в данном случае хлоропластов). Водоросль погибает, но ее органеллы продолжают какое-то время выполнять свои функции в теле нового хозяина.
Elysia chlorotica ставит под сомнение четкое разделение между животными и растениями. Да, перед нами, определенно, животное с пищеварительной и нервной системами, способное свободно передвигаться. Но при этом оно фотосинтезирует как растение и располагает растительными генами в своем геноме.
Эволюция — гораздо более творческая и гибкая штука, чем принято считать.
Стоит бросить щепотку соли в воду, и она растворится за секунды. Но если капнуть масло — оно останется плавать. Почему вода ведет себя так избирательно? Секрет в полярности.
Молекула воды (H2O) — это крошечный "магнит". Кислород тянет электроны на себя сильнее, чем водород, поэтому у него появляется легкий отрицательный заряд, а у двух атомов водорода — положительный. Получается "электрический перекос": одна часть молекулы отрицательная, другая — положительная.
Эта асимметрия позволяет воде взаимодействовать с ионными соединениями и полярными молекулами — противоположно заряженные части молекулы воды притягиваются к разным ионам вещества, разрушая его структуру.
Как вода "ломает" соль
Соль (NaCl) — это соединение с кристаллической решеткой (ионной решеткой кубической формы) из положительного натрия (Na⁺) и отрицательного хлора (Cl⁻). Как только соль попадает в воду, сразу же запускается реакция:
Отрицательная часть молекул воды (кислород) притягивается к Na⁺;
Положительная часть (атомы водорода) — к Cl⁻;
Решетка разрушается, ионы растаскиваются в разные стороны.
Молекулы воды буквально отрывают ионы друг от друга и формируют вокруг каждого гидратную оболочку — слой из нескольких молекул воды, повернутых к иону противоположно заряженной частью, что препятствует их воссоединению. Так разрушается кристаллическая решетка, и ионы равномерно распределяются в объеме раствора.
Схожим образом вода связывается с полярными молекулами вроде сахаров, спиртов и кислот, образуя водородные связи.
Почему масло не растворяется?
Молекулы жиров и масел неполярные, так как состоят из длинных углеводородных цепей, где электроны распределены равномерно (отсутствуют заряженные участки). А вода, являющаяся полярной, не способна взаимодействовать с такой электрически нейтральной структурой, потому что ей просто не за что "зацепиться".
Когда масло попадает в воду, то молекулы воды "игнорируют" его, продолжая образовывать водородные связи между собой. Масло быстро вытесняется и собирается в капли на поверхности. В природе существует четкое правило: полярное растворяет полярное, неполярное растворяет неполярное.
Именно поэтому для удаления жирных загрязнений используют моющие средства — они содержат молекулы с двойной природой (амфифильные), которые могут одновременно взаимодействовать и с водой, и с жирами. У таких молекул одна часть (гидрофильная "голова") полярная и любит воду, а другая (гидрофобный "хвост") неполярная и притягивается к жирам. Когда моющее средство попадает в воду с маслом, его молекулы окружают жировые капли хвостами внутрь, а головами наружу — образуются мицеллы.