Представьте себе астероид диаметром 10 километров, несущийся к Земле со скоростью 30 километров в секунду. Если этот гигант столкнется с нашей планетой, то место его падения не будет иметь особого значения — будь то океан или суша, последствия будут одинаково катастрофическими.
Даже Марианская впадина — самая глубокая точка Мирового океана с глубиной 11 034 метра — не сможет стать препятствием. В отличие от небольших астероидов, этот космический снаряд практически не замедлится при прохождении через атмосферу — она будет пробита, словно тонкая бумага.
Момент катастрофы
При столкновении с земной корой высвободится колоссальная энергия. Температура в точке удара достигнет таких значений, что большая часть астероида и земной породы просто испарится. Образуется гигантский кратер диаметром более 100 километров. Ударная волна многократно обогнет планету, вызывая разрушительные землетрясения, гигантские цунами и пробуждая спящие вулканы повсюду.
Часть обломков, образовавшихся при ударе, улетит в космос и сформирует вокруг Земли кольцо. Массивные раскаленные фрагменты, падающие обратно на поверхность планеты, вызовут множественные пожары по всему миру. Мощное тепловое излучение от места удара и выброшенного материала усугубит ситуацию, превращая континенты в "огненный ад".
Через несколько недель или месяцев атмосфера остынет, но в ней останется столько пыли и сажи от удара и пожаров, что солнечный свет практически перестанет достигать поверхности Земли. Наступит период глобального похолодания. Впрочем, до этого момента доживут немногие.
История может повториться
Подобный сценарий уже разворачивался на Земле около 66,5 миллиона лет назад, когда астероид (или комета) такого же размера создал кратер Чикшулуб на территории современной Мексики. Результатом стало исчезновение динозавров и примерно 75% всех видов живых существ на планете.
Согласно научным данным, астероиды подобного масштаба сталкиваются с Землей каждые 50-100 миллионов лет. Это означает, что мы живем в эпоху, когда такая угроза вполне реальна. Именно поэтому критически важно развивать технологии обнаружения и предотвращения столкновений с опасными космическими объектами. Человечество должно быть готово защитить свой единственный космический дом.
Взгляните на ночное небо. То, что мы видим невооруженным глазом – лишь крохотная часть величественной картины космоса. Но благодаря современным телескопам у нас есть возможность заглянуть гораздо дальше, в самое сердце нашей Галактики – область столь удивительную, что она способна посоперничать с человеческим воображением.
Перед вами уникальное составное изображение центра Млечного Пути. Оно напоминает картину импрессиониста, где красные, фиолетовые и золотистые краски сливаются в космическую симфонию цвета. Но это не художественный вымысел – это реальное изображение, полученное путем объединения данных с нескольких самых мощных телескопов современности:
Космический телескоп "Хаббл" (NASA/ESA);
Рентгеновская обсерватория "Чандра" (NASA);
Инфракрасный телескоп "Спитцер" (NASA);
Very Large Telescope (ESO) в чилийской пустыне Атакама.
Что мы видим?
На расстоянии около 27 000 световых лет от Земли скрывается один из самых загадочных регионов известной нам Вселенной. Здесь, в центре Млечного Пути, космос демонстрирует свою завораживающую мощь:
В самом центре притаилась сверхмассивная черная дыра Стрелец A* – космический колосс, масса которого в 4,3 миллиона раз превышает массу Солнца.
Раскаленные газовые облака, температура которых достигает миллионов градусов.
Древние звездные скопления, где звезды расположены так тесно, что расстояние между некоторыми из них составляет всего несколько световых дней.
Нейтронные звезды — космические маяки, которые при среднем диаметре в 30 километров имеют массу, сопоставимую с массой Солнца, а порой и больше.
Молодые и чрезвычайно горячие сверхмассивные звезды, чье излучение разогревает окружающее пространство.
Изучение галактического центра — это ключ к пониманию эволюции галактик, природы черных дыр и фундаментальных законов Вселенной. Каждый сеанс наблюдения за этим регионом нашего галактического дома позволяет ученым делать открытия, но и обеспечивает их новыми загадками на десятилетия вперед.
Изображение, которое вы видите, – это результат десятилетий развития науки и технологий, труда множества ученых и инженеров. Оно напоминает нам, что космос был, есть и всегда будет источником удивления и вдохновения для всего человечества.
Свет, который мы видим на этом изображении, начал свое путешествие к Земле во времена последнего ледникового периода. За эти тысячелетия исчезли древние цивилизации, были построены и разрушены империи, а он все летел сквозь космическую тьму к нашим глазам. И прямо сейчас, в бескрайних глубинах Млечного Пути, может зарождаться новая звезда – ее первый свет достигнет Земли лишь тогда, когда наша нынешняя история станет такой же далекой, как для нас сегодня – эпоха мамонтов.
Солнце - наш космический маяк, источник жизни и центр Солнечной системы. Каждый день мы видим его на небе, но часто ли мы задумываемся о том, что ждет нашу звезду в далеком будущем? Как ученые могут предсказать судьбу светила, которое будет сиять еще миллиарды лет? Давайте отправимся в увлекательное путешествие по времени и узнаем, какое будущее уготовано нашему Солнцу.
Астрономы изучают жизненные циклы звезд уже много десятилетий. Наблюдая за звездами разных возрастов и масс, ученые составили детальную картину звездной эволюции.
Большинство звезд, включая наше Солнце, проводят большую часть своей жизни на так называемой "главной последовательности". Это стабильный период в жизни звезды, когда она сжигает водород в своем ядре, превращая его в гелий. На диаграмме Герцшпрунга — Рассела, которая показывает соотношение между яркостью и температурой звезд, главная последовательность выглядит как диагональная полоса.
Солнце - типичный представитель звезд главной последовательности средней массы. Изучая звезды, похожие на Солнце, но находящиеся на разных этапах эволюции, астрономы могут предсказать, что произойдет с нашим светилом в будущем. Это похоже на то, как мы можем предсказать будущее развитие ребенка, наблюдая за людьми разного возраста.
Возраст и состав Солнца: космические часы
Определение и уточнение возраста Солнца — одна из важнейших задач астрофизики. Ученые используют несколько методов, чтобы точно установить, сколько лет нашему светилу:
Анализ химического состава
Исследуя спектр солнечного света, астрофизики могут определить, какие элементы присутствуют в Солнце и в каких пропорциях. С течением времени состав звезды меняется, поэтому это дает ключ к определению ее возраста.
Гелиосейсмология
Изучение колебаний поверхности Солнца позволяет заглянуть в его недра и получить информацию о внутренней структуре, которая меняется с возрастом.
Большинство астероидов сформировалось одновременно с Солнечной системой. Измеряя соотношение различных изотопов в образцах астероидного вещества (включая метеориты, которые являются фрагментами астероидов, достигшими Земли), ученые могут определить возраст Солнечной системы и, следовательно, Солнца.
Сравнение с другими звездами
Наблюдая за звездами, похожими на Солнце, но находящимися на разных этапах эволюции, астрономы могут уточнить оценку возраста нашего светила.
Комбинируя эти методы, ученые пришли к выводу, что Солнцу около 4,6 миллиарда лет. Это действительно середина жизненного пути для звезды такой массы, как наше Солнце.
Солнцеподобные звезды обычно проводят на главной последовательности около десяти миллиардов лет. Это означает, что у нашего светила в запасе примерно пять миллиардов лет стабильной жизни, прежде чем начнутся драматические изменения.
Интересно отметить, что состав Солнца также дает нам информацию о формировании всей Солнечной системы. Например, наличие определенных тяжелых элементов указывает на то, что наше Солнце является звездой второго поколения, или звездой населения I, сформировавшейся из остатков предыдущих звезд. Следовательно, вся Солнечная система — продукт "переработки" древних звезд.
Компьютерное моделирование: виртуальное путешествие в будущее
Современные суперкомпьютеры позволяют создавать сложные модели звездной эволюции. Ученые "запускают" виртуальное Солнце и наблюдают за его изменениями на протяжении миллиардов лет, учитывая все известные физические процессы.
Эти модели учитывают множество факторов:
Ядерные реакции в центре Солнца;
Перенос энергии от ядра к поверхности;
Изменения в химическом составе;
Гравитационное сжатие и расширение;
Потеря массы через солнечный ветер.
Компьютерные симуляции позволяют ученым "увидеть" будущее Солнца во всех деталях, от постепенного увеличения яркости до драматических изменений в конце жизни звезды.
Ближайшие пять миллиардов лет: медленное нагревание
Солнце будет постепенно становиться ярче и горячее. Его светимость будет увеличиваться примерно на 10% каждый миллиард лет. Это приведет к серьезным изменениям на Земле задолго до финальных стадий эволюции звезды. Уже через миллиард лет океаны могут начать испаряться, а атмосфера - улетучиваться в космос.
Красный гигант: грандиозное расширение
Примерно через 5-7 миллиардов лет Солнце исчерпает запасы водорода в ядре и начнет расширяться, превращаясь в красный гигант. Его размер увеличится в сотни раз, а внешние слои охладятся и покраснеют. На этой стадии Солнце может поглотить ближайшие планеты, включая Меркурий, Венеру и, возможно, Землю.
Планетарная туманность: космический фейерверк
В конце жизни Солнце сбросит внешние слои, образуя красивую планетарную туманность. Это будет похоже на гигантский космический фейерверк, видимый на огромных расстояниях. Сброшенное вещество обогатит межзвездную среду элементами, которые могут стать строительным материалом для новых звезд и планет.
Финальная стадия - Солнце станет плотным белым карликом размером примерно с Землю. Этот небольшой, но очень горячий объект будет медленно остывать в течение триллионов лет, постепенно угасая и превращаясь в черный карлик - холодный, темный остаток некогда яркой звезды.
Заключение: наше место во Вселенной
Хотя будущее Солнца может казаться далеким, понимание его эволюции критически важно для науки. Это знание помогает нам лучше понять нашу планету, Солнечную систему и место человечества во Вселенной.
Изучение судьбы Солнца - яркий пример того, как наблюдения, теоретическая физика и компьютерное моделирование объединяются, чтобы заглянуть в будущее, отстоящее от нас на миллиарды лет. Оно напоминает нам о грандиозных масштабах космоса и времени, в которых существует наша цивилизация.
Пока Солнце продолжает свой неспешный танец в космосе, мы, его дети, продолжаем исследовать и восхищаться чудесами Вселенной, частью которой являемся.
Гравитационное поле Земли - невидимая, но фундаментальная сила, формирующая облик нашей планеты. Обычно это поле равномерно распределено по земной поверхности, незримо воздействуя на все объекты. Но, анализируя данные, полученные в ходе миссии NASA GRACE, ученые обнаружили нечто поистине удивительное - огромную аномалию в гравитационном поле Земли, своеобразную "вмятину" планетарного масштаба. Эта загадочная область бросает вызов нашему пониманию геофизики и привлекает внимание исследователей со всего мира.
Эта аномалия находится в самом сердце Индийского океана. На карте гравитационного поля она выглядит как темно-синее пятно, указывающее на значительно меньшую концентрацию земной массы в этой области по сравнению с окружающими регионами.
В поисках ответов
В 2018 году Национальный центр полярных и океанических исследований Индии (NCPOR) приступил к исследованию аномалии, развернув вокруг нее сеть донных сейсмометров — высокочувствительных приборов, способных уловить малейшие колебания земной коры.
Однако, несмотря на годы исследований, окончательного ответа у ученых пока нет. Но есть несколько интригующих гипотез:
Взаимодействие ядра и мантии
Некоторые ученые полагают, что аномалия может быть вызвана динамическими процессами на границе ядра и мантии Земли. Там происходят сложные взаимодействия между жидким внешним ядром и твердой нижней мантией, которые могут создавать структурные неоднородности. Эти неоднородности в распределении массы и плотности на глубине могут проявляться как гравитационные аномалии на поверхности Земли.
Мантийные течения
Другая гипотеза связывает "вмятину" с сейсмическими низкоскоростными аномалиями в верхней мантии. Эти аномалии представляют собой области, где сейсмические волны движутся медленнее, чем в окружающих породах. Такие зоны часто интерпретируются как участки с повышенной температурой или частичным плавлением пород. Эти особенности могут влиять на распределение массы в мантии, что, в свою очередь, может создавать наблюдаемые аномалии в гравитационном поле Земли.
Пожалуй, самая захватывающая гипотеза предполагает, что аномалия связана с океаном Тетис, существовавшим в эпоху мезозоя. Согласно этой идее, океанические литосферные плиты, формировавшие дно Тетиса, активно погружались под материковые плиты, создавая глубокие впадины. Впоследствии эти впадины были покрыты новыми литосферными плитами, образовавшими дно современного Индийского океана. Однако древние структуры частично сохранились, создавая наблюдаемую сегодня гравитационную аномалию. По сути, эта гипотеза предполагает, что под дном Индийского океана скрывается дно исчезнувшего океана Тетис.
Гравитационная аномалия в Индийском океане - это не просто научная загадка. Она символизирует огромный потенциал для открытий, который таят в себе наши океаны. Эта "вмятина" в гравитационном поле Земли напоминает нам, как мало мы знаем о мире под водой, покрывающей более 70% поверхности нашей планеты.
Изучение подобных феноменов требует не только передовых технологий, но и постоянного присутствия человека в океанских глубинах. Это подводит нас к мысли о необходимости более активного освоения океана, включая возможность создания постоянных подводных поселений. Такой шаг не только расширил бы наши научные горизонты, но и открыл бы новые возможности для человечества в целом.
Мирмекохория — это удивительная форма симбиоза, при которой растения используют муравьев для распространения своих семян. Более 11 000 видов растений полагаются на этих маленьких, но трудолюбивых насекомых, чтобы обеспечить выживание своего потомства.
Как это работает?
Растения производят семена с особыми питательными придатками, богатыми жирами и белками. Эти придатки, называемые элайосомами, привлекают муравьев, которые уносят семена в свои колонии.
Для муравьев элайосомы служат ценным источником пищи. Сами же семена остаются нетронутыми, так как муравьи съедают только придаток. Кроме того, они оказываются в идеальных условиях для прорастания — в питательной почве, защищенные от хищников, засухи и холодов.
Мирмекохория играет важную роль в экосистемах, способствуя распространению растений и поддержанию биоразнообразия. Это еще один пример того, как природа создает сложные и взаимовыгодные связи между видами.
Гамма-всплески (далее ГВ) — масштабные и наиболее яркие события во Вселенной, представляющие собой выброс колоссального количества энергии в виде гамма-излучения.
ГВ могут различаться в зависимости от продолжительности и количества высвобождаемой энергии, поэтому их делят на два вида: короткие ГВ и длинные ГВ.
Короткие ГВ
События такого рода наиболее высокоэнергетические. Они продолжаются от нескольких миллисекунд до двух секунд. К появлению коротких ГВ приводит слияние компактных, но при этом чрезвычайно массивных объектов, таких как пара нейтронных звезд, нейтронная звезда и черная дыра и, возможно (пока лишь теоретически), пара черных дыр. Несмотря на непродолжительность короткого ГВ, за этот промежуток времени высвобождается больше энергии, чем наше Солнце сгенерирует за всю свою жизнь.
Длинные ГВ
Продолжительность событий такого формата составляет от двух секунд до нескольких часов. Длинные ГВ связаны с такими катастрофическими событиями, как вспышки сверхновых (взрывы массивных звезд). Вспышка сверхновой приводит к появлению нейтронной звезды, но если исходная звезда была достаточно массивной, то сжатие не останавливается и зарождается черная дыра.
Оба типа ГВ имеют крайне высокую энергию и сопровождаются яркими послесвечениями в других диапазонах электромагнитного излучения, таких как рентгеновское, видимое и радиоизлучение. Исследование ГВ помогает ученым лучше понять устройство и эволюционный механизм Вселенной.
Перед вами пейзаж Венеры, снятый советским спускаемым аппаратом "Венера-14", который совершил мягкую посадку на поверхность "адской" планеты 5 марта 1982 года. Температура на месте составляла 465 градусов Цельсия — достаточно для плавления олова, свинца и цинка.
Как видно, небо имеет характерный желто-коричневый оттенок, и это связано с тем, что Венера наделена густой токсичной атмосферой, наполненной углекислым газом, и также она постоянно окутана густыми желтоватыми облаками серной кислоты.
Для раскрашивания снимка использовались данные "Венеры-14" о цвете венерианского неба на разных высотах и об общей окраске поверхности.
Улучшили и раскрасили изображение: Дональд Митчелл и Джейсон Мейджор.
Вокруг могучего Юпитера кружит спутник Каллисто (средний диаметр 4 820 километров) — космический летописец, хранящий память о древнейших временах Солнечной системы. Этот загадочный мир обладает уникальной особенностью — самой старой поверхностью среди всех известных небесных тел нашей системы.
Представьте себе — последние значительные изменения здесь происходили более 3,5 миллиарда лет назад, когда на Земле только зарождалась первая жизнь.
Ледяные шпили - стражи времени
Поверхность Каллисто украшают величественные ледяные шпили высотой от 80 до 100 метров. Эти гигантские структуры, покрытые тонким слоем темной пыли, появились на заре формирования Солнечной системы в результате столкновений с другими космическими телами.
Удары были настолько мощными, что извлекли лед из глубин спутника и расшвыряли его по окрестностям, создав эти уникальные формации. Однако шпили медленно разрушаются, что приводит к скатыванию пыли и ее накоплению в низинах. Через несколько миллиардов лет эти величественные структуры превратятся в пологие пылевые холмы, но пока они стоят как безмолвные свидетели истории эволюции нашей планетной системы.
Застывшая история
В отличие от своего буйного соседа Ио, где запредельная вулканическая активность (более 400 действующих вулканов!) обновляет поверхность со скоростью около сантиметра в год, Каллисто сохраняет практически первозданный вид.
Поверхность спутника испещрена множеством ударных кратеров, некоторым из которых более четырех миллиардов лет! Эти древние шрамы хранят информацию о ранних этапах формирования нашей космической окрестности, включая историю появления самого Юпитера и других планет.
Тайны подповерхностного океана
Под застывшей маской древней коры Каллисто скрывается грандиозная тайна — целый океан жидкой воды, раскинувшийся в недрах ледяного спутника.
Он залегает настолько глубоко, что достичь его современными технологиями невозможно. Однако само существование этого океана делает Каллисто еще более интригующим объектом для исследований.
Значение для науки
Если человечество когда-нибудь отправит на Каллисто исследовательский аппарат, способный собрать и доставить на Землю образцы реголита (особенно те, что были бы получены под слоем пыли одного из шпилей), мы получим бесценные данные о ранней истории Солнечной системы.
Это будет подобно чтению древней летописи, в деталях повествующей о событиях, происходивших миллиарды лет назад. Каждая частица грунта может рассказать историю о космических катаклизмах, формировании планет и процессах, определивших современный облик нашей планетной системы. Возможно, именно в древних породах Каллисто хранится ключ к разгадке тайны зарождения жизни на Земле.
Глядя на гигантские многовековые секвойи высотой более 100 метров, сложно представить, что даже у таких исполинов есть свой природный потолок роста. Тем не менее деревья не могут расти бесконечно вверх — этому препятствуют несколько фундаментальных физических факторов.
Главное ограничение — гравитация и ее влияние на подъем воды. Дерево можно представить как природный насос, который должен поднимать воду с питательными веществами от корней до листьев, расположенных на самой вершине. Чем выше поднимается вода, тем большее давление требуется для ее подъема.
Механизм подъема воды в деревьях основан на явлении, которое ученые называют транспирацией. Когда вода испаряется из листьев, в проводящих тканях ствола создается значительный градиент давления, обеспечивающий движение воды вверх. Однако у этого процесса есть свой предел — около 130 метров высоты. При большей высоте происходит нарушение целостности водного потока из-за кавитации, что приводит к прекращению водоснабжения верхних частей дерева. Другими словами, на большей высоте природная система транспортировки воды перестает работать эффективно, что делает дальнейший рост дерева невозможным.
Второй важный фактор — необходимость поддерживать механическую стабильность. С увеличением высоты дерево должно становиться все более массивным у основания, чтобы противостоять ветрам и удерживать собственный вес. Это требует огромных затрат энергии и ресурсов, которые могли бы пойти на рост вверх.
Интересно, что самое высокое из ныне живущих деревьев — 800-летний гиперион, представитель вида секвойи вечнозеленой (лат. Sequoia sempervirens). Гигант достигает высоты в 115,92 метра, что близко к тому пределу, который определяют физические законы.
На протяжении миллионов лет эволюции деревья развивались, стремясь к максимально возможной высоте, позволяющей получать больше солнечного света. Благодаря этому высокие деревья выработали ряд удивительных приспособлений для борьбы с гравитацией. Например, в верхней части ствола их клетки имеют меньший диаметр и более плотные стенки, что помогает поддерживать необходимое давление воды. А их корневая система может распространяться на площадь, в несколько раз превышающую размер кроны, чтобы обеспечить устойчивость и достаточное поступление воды.
Таким образом, предельная высота дерева — это результат тонкого баланса между эволюционным стремлением к свету и фундаментальными законами физики. И хотя 130 метров может показаться не таким уж большим пределом, стоит помнить, что это примерно высота 40-этажного дома — впечатляющее достижение для живого организма, поднимающего воду без единого механического насоса.
Деревья — настоящие гении коммуникации. Под слоем почвы они создают удивительную сеть, которую ученые назвали "Древесная Паутина" (англ. Wood Wide Web). Эта сложная подземная система состоит из грибных нитей — микоризы, соединяющей корни разных деревьев.
Через эту сеть деревья обмениваются питательными веществами, водой и даже информацией. Например, когда одно дерево атакуют вредители, оно отправляет химические сигналы, которые по грибным нитям передаются соседним деревьям. Получив такой сигнал, они заранее усиливают свою защиту.
Особенно интересно, что старые, крупные деревья, которые ученые называют "материнскими", активно поддерживают молодые саженцы через эту сеть. Они делятся с ними питательными веществами, помогая выжить в тени и окрепнуть. Это настоящая забота, напоминающая отношения в семье.
14 июля 2015 года мимо системыПлутонапронесся космический аппарат NASA "Новые горизонты", передав на Землю первые в истории детализированные изображения далекой карликовой планеты и некоторых ее спутников. Плутон преподнес ученым сюрприз — его поверхность оказалась не однородной и застывшей во времени, как предполагалось ранее, а удивительно разнообразной и геологически активной.
Особое внимание привлекли ледяные горы. В отличие от земных, состоящих преимущественно из твердых каменных пород, основу гор Плутона составляет водяной лед. Однако не спешите представлять их хрупкими и прозрачными!
При экстремально низких температурах, царящих на поверхности Плутона (в среднем около -233 градусов Цельсия), свойства льда настолько меняются, что он становится плотным, твердым и прочным, как гранит на Земле.
Интересный факт: если бы земной гранит оказался на Плутоне, то он бы стал хрупким и ломким из-за экстремального холода, в то время как водяной лед приобретает кристаллическую структуру, делающую его исключительно прочным материалом.
Величественные горы Тенцинга* возвышаются в среднем на 3,4 километра от основания, что сопоставимо с высотой Доломитовых Альп в Европе! Кроме того, средний уклон их склонов составляет 19,2 градуса, что делает горы Тенцинга не только высокими, но и одними из самых крутых горных систем в Солнечной системе.
*Эта плутонианская горная гряда названа в честь шерпа Тенцинга Норгея, одного из двух людей, которые первыми покорили высочайшую вершину мира — Эверест.
Примечательно, что благодаря малой гравитации Плутона (примерно 6% от земной) и отсутствию активной эрозии, эти массивные ледяные структуры сохраняют стабильность и существуют уже более 100 миллионов лет.
Многочисленные горные вершины далекого Плутона прекрасно просматриваются сквозь тонкую голубоватую атмосферу, состоящую из азота с примесями метана и угарного газа.
Когда солнечный свет проходит через эту разреженную оболочку, создается холодное и загадочное голубое свечение, напоминающее марсианские закаты.
Планетологи считают, что горы Плутона могут быть продуктомкриовулканизма— извержений не раскаленной магмы, а смеси воды, аммиака и метана. Ничего подобного на Земле нет, но в Солнечной системе криовулканизм — достаточно распространенное явление, которое можно наблюдать, например, на некоторых спутниках газовых гигантов.
Миссия "Новые горизонты" показала, что даже самые дальние уголки Солнечной системы способны удивлять нас своей красотой, разнообразием и изменчивостью.
Иногда научные открытия полностью противоречат тому, что мы называем "логикой". Еще не так давно, если бы кто-то заявил, что на раскаленном Меркурии, ближайшей к Солнцу планете, находятся гигантские залежи водяного льда, то этого человека в лучшем случае восприняли бы как... фантазера. Но природа, как показывает практика, способна удивлять нас снова и снова.
Перед вами 60-километровый кратер Кандинский, расположенный около северного полюса Меркурия. Это необычное геологическое образование хранит одну из самых интригующих тайн Солнечной системы — обильные запасы водяного льда на планете, где дневная температура может достигать 430 градусов Цельсия.
Как такое возможно? Все дело в уникальной геометрии кратера. Его основание находится в постоянной тени, надежно изолированное от испепеляющих солнечных лучей крутыми стенками. В этих вечно затененных областях температура может опускаться до -180 градусов, создавая идеальные условия для сохранения водяного льда.
Кратер получил свое имя в честь Василия Васильевича Кандинского — русского художника, одного из основоположников абстракционизма. Это не случайно: практически все кратеры на Меркурии носят имена выдающихся деятелей искусства, что превращает карту планеты в своеобразную галерею славы человеческой культуры.
Уникальные снимки кратера были получены 13 августа 2013 года космическим аппаратом NASA MESSENGER. Чтобы заглянуть в вечную тьму, инженерам пришлось проявить недюжинную изобретательность: камеры аппарата использовали солнечный свет, отраженный от стенок кратера, чтобы различить детали в его темных глубинах.
Но Меркурий — не единственное место, где лед прячется в неожиданных местах. На Луне также обнаружены затененные кратеры, хранящие водяной лед. А под ледяными панцирями спутников Юпитера — Ганимеда, Европы и Каллисто — предположительно скрываются целые океаны жидкой воды. Кроме того, подповерхностными океанами могут обладать Диона, Мимас, Титан и Энцелад — спутники Сатурна. И, согласно новым исследованиям, обладателем подповерхностного океана может быть даже Плутон.
Марсианский кратер Виктория — настоящая космическая достопримечательность. Этот ударный гигант впечатляет своими размерами: около 750 метров в диаметре и глубиной примерно 70 метров.
Снимок, сделанный орбитальным аппаратом NASA Mars Reconnaissance Orbiter (MRO), раскрывает удивительные детали. По краям кратера видны слоистые породы — как годовые кольца на спиле дерева, они рассказывают историю геологического прошлого Красной планеты.
Интересно, что именно этот кратер исследовал ровер NASA Opportunity, проведя здесь почти год своей миссии. Виктория — не просто огромная яма, сформировавшаяся в результате падения космического камня, а настоящая машина времени, позволяющая заглянуть в далекое прошлое Марса.
Команда планетологов из Массачусетского технологического института, которую возглавил доктор Сигэру Вакита, моделируя сценарии формирования многокольцевых ударных кратеров Тайр и Калланиш на ледяной поверхности Европы, спутника Юпитера, пришла к выводу: толщина ледяной коры Европы, отделяющей подповерхностный океан от космической среды, составляет не менее 20 километров.
Из этого следует, что для получения ответа на вопрос, есть ли в океане Европы жизнь, нам придется очень много и долго бурить. Технологий для этого у человечества нет, как и нет соответствующего опыта и щедрого финансирования науки, так что ни сегодня, ни через двадцать лет, мы не сможем реализовать проект такого масштаба.
Пока же команда Вакиты предлагает осуществить не менее интересный проект по "проникновению в подповерхностный океан Энцелада", небольшого ледяного спутника Сатурна. Стоит отметить, что в отличие от океана Европы с океаном Энцелада у нас уже был прямой — хотя и незначительный — контакт за счет гейзерной активности. Это событие, произошедшее в рамках миссии NASA "Кассини", показало, что по составу подповерхностный океан Энцедала очень похож на Земной; он содержит все химические ингредиенты, необходимые для зарождения жизни.
Гейзерная активность Энцелада связана с разломами на южном полюсе спутника, и команда Вакиты предлагает отправить к краю одного из них посадочный модуль с гибкими (мягкими) роботами на борту, которые просто... упадут внутрь. Разломы имеют доступ к подповерхностному океану, а значит рано или поздно роботы окажутся в нем. Для организации такой миссии нужно решить как минимум две глобальные проблемы:
Найти способ качественно передавать данные из океана, находящегося под ледяной корой толщиной не менее километра (вероятно, посадочный модуль + спутник-ретранслятор решат вопрос);
Найти около миллиарда долларов для организации миссии.
Перед вами Прометей, один из 274 спутников Сатурна, запечатленный 6 декабря 2015 года космическим аппаратом NASA "Кассини", который в момент наблюдения находился на расстоянии 37 400 километров от поверхности картофелеобразной луны. На заднем плане изображения видна часть F-кольца газового гиганта.
Примечательно, что F-кольцо Сатурна существует благодаря коллаборации Прометея и Пандоры, еще одного небольшого спутника.
Размеры Прометея составляют примерно 137 × 81 × 56 километров. На полный оборот вокруг Сатурна у спутника уходит всего 0,613 дня. Среднее расстояние от Прометея до "окольцованного гиганта" составляет 139 380 километров. Для сравнения, среднее расстояние от Земли до Луны составляет 384 400 километров.
Скорость убегания* Прометея составляет 80 километров в час, что ничтожно мало в сравнении с его средней скоростью движения по орбите в 59 526,2 километра в час.
*Скорость убегания — это наименьшая скорость, необходимая для удержания объекта на круговой орбите вокруг небесного тела.
Перед вами (ниже) снимок марсианского неба над северо-западным краем кратера Гейла, полученный ровером NASA Curiosity вскоре после захода Солнца 2 мая 2021 года.
В этот момент марсоходу удалось запечатлеть удивительное зрелище — серебристые облака, парящие высоко в марсианской мезосфере, почти на границе с космосом.
Эти завораживающие облачные формации во многом похожи на земные серебристые облака, которые периодически можно наблюдать в верхних слоях атмосферы нашей планеты. Однако у марсианских облаков есть свои особенности.
Наблюдения с помощью нескольких орбитальных аппаратов NASA и Европейского космического агентства (ESA) помогли установить, что марсианские серебристые облака состоят преимущественно из кристаллов замерзшего углекислого газа (сухого льда) с небольшим содержанием водяного льда. Такой состав отличает их от земных серебристых облаков, которые формируются из кристаллов водяного льда.
Примечательно, что марсианские серебристые облака формируются с гораздо меньшей географической избирательностью, чем их аналоги на нашей планете. Если земные серебристые облака обычно наблюдаются преимущественно в полярных широтах, то на Марсе подобные атмосферные образования можно увидеть практически в любом регионе планеты.
Однако на Марсе облака формируются намного реже, чем на Земле, что объясняется чрезвычайной разреженностью атмосферы Красной планеты. Поэтому каждое наблюдение подобных явлений имеет большое значение для исследователей.
Изучая марсианские облака, ученые получают ценные сведения о климате, атмосферной циркуляции и водном цикле планеты. Эти знания критически важны не только для реконструкции климатической истории Марса, но и для оценки потенциальной возможности существования жизни в прошлом или даже настоящем. Кроме того, понимание атмосферных процессов играет ключевую роль при проектировании будущих роботизированных — и, возможно, когда-нибудь пилотируемых — миссий на Марс.
На изображении видны многочисленные сине-серые столпы, которые состоят преимущественно из холодного молекулярного водорода и пыли. Эти газопылевые структуры вовлечены в процесс формирования новых звезд, под излучением которых столпы начинают разрушаться (звездный ветер молодых звезд "расшвыривает" окружающую материю).
Возраст скопления Вестерлунд 2, удаленного примерно на 20 000 световых лет от Земли, составляет "всего" около двух миллионов лет. В состав Вестерлунд 2 входят одни из самых массивных и ярких известных звезд. То есть все звезды, попавшие в кадр, существенно больше и ярче Солнца.
Этот космический гигант простирается на 100 световых лет — для сравнения, это расстояние в 25 раз больше, чем от нашего Солнца до ближайшей звезды!
Находясь на расстоянии около 9 000 световых лет от Земли, туманность представляет собой грандиозную область звездообразования, где раскаленный газ и космическая пыль окрашены в потрясающие оттенки синего, желтого и красного под воздействием излучения молодых массивных звезд.
Исследования показывают, что галактика NGC 4656, известная как "Хоккейная клюшка", обрела свою необычную изогнутую форму в результате гравитационного взаимодействия с соседней галактикой NGC 4631 — их "космический танец" продолжался сотни миллионов лет.
При этом деформация — не единственное последствие этого взаимодействия. В изогнутых областях галактики наблюдается интенсивное звездообразование, создающее характерное голубое свечение молодых звезд, а общая протяженность этой космической "клюшки" составляет более 100 000 световых лет.
Объект находится на расстоянии около 30 миллионов световых лет от Земли.
Перед вами улучшенное изображение 396-километрового Мимаса, ледяного спутника Сатурна. Снимок был получен в январе 2005 года космическим аппаратом NASA "Кассини", который в момент наблюдения находился на расстоянии 215 273 километра от спутника.
Огромное ударное образование чуть ниже центра наблюдаемой стороны спутника представляет собой 139-километровый кратер Гершель и его центральный пик высотой около шести километров. Если бы на Земле существовал кратер такого же масштаба (по относительным размерам), то его диаметр превышал бы 4 000 километров (почти средняя протяженность России с севера на юг или Австралии с запада на восток).
Примечательно, что Мимас — самый маленький из известных астрономических объектов, собственная гравитация которого обеспечила ему приблизительно сферическую форму.